Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context. Parker Solar Probe (PSP) performs Venus gravity assists (VGAs) in order to lower its perihelion. PSP takes high-cadence electric and magnetic field observations during these VGAs, providing the opportunity to study plasma waves in Venus’s induced magnetosphere. Aims. We summarize the plasma environment during these VGAs, including the regions of near-Venus space that PSP traversed and the key boundary crossings. We comprehensively identify Langmuir, ion acoustic, whistler-mode, and ion cyclotron waves during these VGAs and map the location of these waves throughout near-Venus space. Methods. This study analyzes different data products from the PSP FIELDS instrument suite from throughout the first five VGAs. Results. We compare the FIELDS instrumentation capabilities to the capabilities of the plasma wave instruments on board the Pioneer Venus Orbiter (PVO) and the Venus Express (VEX). We find that the PVO electric field instrument was well suited to observe Langmuir waves, especially near the bow shock and in the foreshock. However, evaluation of the other plasma waves detected by PSP FIELDS reveals that PVO and VEX would have often been unable to observe key features of these waves modes, including maximum power, bandwidth, and propagation direction. These wave characteristics provide critical information on the wave generation mechanisms and wave-particle interactions, so provide fundamental information on the nature of Venus’s induced magnetosphere. Conclusions. These results highlight the advances in plasma wave instrumentation capabilities that have been made in the decades since the PVO and VEX eras, and illustrate the value of a plasma wave instrument on a new Venus mission.more » « less
-
Abstract In van der Holst et al. (2019), we modeled the solar corona and inner heliosphere of the first encounter of NASA’s Parker Solar Probe (PSP) using the Alfvén Wave Solar atmosphere Model (AWSoM) with Air Force Data Assimilative Photospheric flux Transport–Global Oscillation Network Group magnetograms, and made predictions of the state of the solar wind plasma for the first encounter. AWSoM uses low-frequency Alfvén wave turbulence to address the coronal heating and acceleration. Here, we revise our simulations, by introducing improvements in the energy partitioning of the wave dissipation to the electron and anisotropic proton heating and using a better grid design. We compare the new AWSoM results with the PSP data and find improved agreement with the magnetic field, turbulence level, and parallel proton plasma beta. To deduce the sources of the solar wind observed by PSP, we use the AWSoM model to determine the field line connectivity between PSP locations near the perihelion at 2018 November 6 UT 03:27 and the solar surface. Close to the perihelion, the field lines trace back to a negative-polarity region about the equator.more » « less
-
Abstract The Van Allen Probes Electric Fields and Waves (EFW) instrument provided measurements of electric fields and spacecraft floating potentials over a wide dynamic range from DC to 6.5 kHz near the equatorial plane of the inner magnetosphere between 600 km altitude and 5.8 Re geocentric distance from October 2012 to November 2019. The two identical instruments provided data to investigate the quasi-static and low frequency fields that drive large-scale convection, waves induced by interplanetary shock impacts that result in rapid relativistic particle energization, ultra-low frequency (ULF) MHD waves which can drive radial diffusion, and higher frequency wave fields and time domain structures that provide particle pitch angle scattering and energization. In addition, measurements of the spacecraft potential provided a density estimate in cold plasmas ( $$<20~\text{eV}$$ < 20 eV ) from 10 to $$3000~\text{cm}^{-3}$$ 3000 cm − 3 . The EFW instrument provided analog electric field signals to EMFISIS for wave analysis, and it received 3d analog signals from the EMFISIS search coil sensors for inclusion in high time resolution waveform data. The electric fields and potentials were measured by current-biased spherical sensors deployed at the end of four 50 m booms in the spacecraft spin plane (spin period $$\sim11~\text{sec}$$ ∼ 11 sec ) and a pair of stacer booms with a total tip-tip separation of 15 m along the spin axis. Survey waveform measurements at 16 and/or 32 S/sec (with a nominal uncertainty of 0.3 mV/m over the prime mission) were available continuously while burst waveform captures at up to 16,384 S/sec provided high frequency waveforms. This post-mission paper provides the reader with information useful for accessing, understanding and using EFW data. Selected science results are discussed and used to highlight instrument capabilities. Science quantities, data quality and error sources, and analysis routines are documented.more » « less
-
null (Ed.)Context. Aims. We systematically search for magnetic flux rope structures in the solar wind to within the closest distance to the Sun of ~0.13 AU, using data from the third and fourth orbits of the Parker Solar Probe. Methods. We extended our previous magnetic helicity-based technique of identifying magnetic flux rope structures. The method was improved upon to incorporate the azimuthal flow, which becomes larger as the spacecraft approaches the Sun. Results. A total of 21 and 34 magnetic flux ropes are identified during the third (21-day period) and fourth (17-day period) orbits of the Parker Solar Probe, respectively. We provide a statistical analysis of the identified structures, including their relation to the streamer belt and heliospheric current sheet crossing.more » « less
An official website of the United States government
